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all pairs of non-zero entries in each row. In practice, 
at the points (C) where the circuits are identified, 
appropriate entries are made in a matrix of 
coefficients of the circuit and sum equations. 

NN=(N'(N-I))/2 
DO{I=I,M);L=O;DO(J=I,N-I);DO{KzJ+I,N);L=L+I 

IF(B{I,J).NE.0.0.AND.B(I,K).NE.0.0) THEN 
NP(I,L,I)-J;NP(I,L,2)=K 

ENDIF 
ENDDO;ENDDO;ENDDO 
N4-0 ! find 4-circuits 
DO(I-I,M-I):DO(J=I+I,M);DO(K~I,NN) 

IF(NP(J,K,I)-0) CYCLE 
IF(NP(I,K,I)-NP(J,K,I).AND.NP(I,K,2)-NP(J,K,2)) THEN 

N4=N4+I;NI~NP(I,K,I);N2=NP(I,K,2) 
4-circuit in rows I,J and coluntns NI,N2 

ENDIF 
ENDDO;ENDDO:ENDDO ! found N4 4-circuits 
N6=0 ! find 6-circuits 
DO(I~I,M-2);DO(J=I+I,M-I);DO(KI=I,NN):DO(LI=I,NN) 

DO(KI-I,2):DO(K2=I,2) 
JI-2-KI/2;J2-2-K2/2 
IF{NP(I,KI,KI)-Np(J, LI,K2).AND.NP(I,KI,JI).NE.NP(J,LI,J2])THEN 

DO(K-J+I,M);DO(L=I,NN);DO(K3-1,2) 
J3=2-K3/2 
IF(NP(I,KI,JI)-NP(K,L,K3).AND.NP(J,LI,J2)-NP(K,L, J3)) THEN 

N6-N6+I;NI-NP(I,KI,KI):N2-NP{I,KI,JI);N3=NP(J, LI,J2) 
6-circuit: row 1 - I cols N1 and N2 

row 2 = J cols N1 and N3 
row 3 = K cols N2 and N3 

ENDIF 
ENDDO;ENDDO;ENDDO 

ENDIF 
ENDDO;ENDDO;ENDDO;ENDDO;ENDDO;ENDDO ! found N6 6-circuits 
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Abstract 

The advantages of the cut or section method in 
describing quasicrystal structures and phason defects 
are given. The real and reciprocal quasilattice formu- 
lation is derived straightforwardly. It is shown that 
the linear phason strain which leads to the quasilattice 
distortion is equivalent to a rotation of physical space 
relative to the high-dimensional space. A continuous 
rotation of the physical space will make the quasilat- 
tice deviate from its idealized form and turn gradually 
into a periodic lattice. The derivation of a geometrical 
relationship between the icosahedral quasilattice and 
the corresponding b.c.c, lattice becomes simple and 
clear. This will be beneficial to the construction of 
a quasicrystal structure model by reference to the 
corresponding b.c.c, crystal structure. 

I. Introduction 
Soon after the discovery of icosahedral quasicrystals 
in rapidly solidified A1-Mn alloys (Shechtman, Blech, 
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Gratias & Cahn, 1984), great attention was paid to 
the description of quasicrystal structure which has a 
long-range quasiperiodic translational order and 
long-range orientational order. The quasicrystal 
structure offers a new kind of incommensurate crystal 
structure. Its Fourier transform consists of a 8 func- 
tion as for periodic crystals but the point symmetries 
are incompatible with traditional crystallography. 
Some authors proposed a density wave description 
of quasicrystal structures (Kalugin, Kitaev & Levitov, 
1985; Bak, 1985a, b; Levine, Lubensky, Ostlund, 
Ramaswamy, Steinhardt & Toner, 1985; Lubensky, 
Ramaswamy & Toner, 1985; Jaric, 1985; Nelson & 
Sachdev, 1985; Sachdev & Nelson, 1985). Others 
described the quasicrystal structure by a technique 
based on projection from a high-dimensional lattice 
to obtain the quasicrystalline lattice (Kramer & Neri, 
1984; Kalugin, Kitaev & Levitov, 1985; Duneau & 
Katz, 1985; Elser, 1985, 1986). It was shown that the 
analytical formulation of quasicrystal structures 
derived from the projection method is identical with 
the density wave description (Li & Wang, 1988). The 
quasicrystalline lattice can also be obtained by the 
generalized dual method (Socolar, Steinhardt & 
Levine, 1985; Levine & Steinhardt, 1986; Socolar & 
Steinhardt, 1986) or the multigrid method (de Brujin, 
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1981). In addition, an icosahedral glass model was 
proposed (Stephens & Goldman, 1986), which 
describes icosahedral quasicrystals as densely packed 
atomic clusters having local icosahedral symmetry. 

A decade before the discovery of quasicrystals, 
Penrose tiling (Penrose, 1974) was known as a 
geometrical structure with fivefold symmetry. It has 
perfect quasiperiodic long-range order and can be 
constructed by both projection and dual methods. 
The Fourier transform of a Penrose tiling or of an 
analog of Penrose tiling shows Bragg peaks and 
resembles the observed diffraction patterns of quasi- 
crystals (Mackay, 1982). High-resolution electron 
microscopic images show a configuration of white 
dots in coincidence with Penrose tiling (Bursill & 
Peng, 1985; Hiraga, Hirabayashi, Inoue & Masumoto, 
1985; Zhang, Ye & Kuo, 1985; Li & Liu, 1986). 
Penrose tiling is now accepted as an important 
geometrical tool for describing quasicrystal structure. 
If the six-dimensional (6D) space is divided into two 
orthogonal subspaces - the physical space or parallel 
space Ell and the pseudo space or perpendicular space 
E±-  the projection of a 6D cubic lattice onto the 
physical space which is a superplane in the 6D space 
gives the typical 3D Penrose tiling consisting of pro- 
late and oblate rhombohedra (Kramer & Neri, 1984; 
Kalugin, Kitaev & Levitov, 1985; Duneau & Katz, 
1985; Elser, 1986). The ratio between volumes of the 
two kinds of rhombohedra equals the golden mean 
T = (1 + 51/2)/2. 

The cut or section method was first proposed by 
de Wolff (1974) in describing incommensurate modu- 
lated structures. It gives the same result as the projec- 
tion method in describing quasicrystals so that the 
term 'cut and projection' is popular in literature con- 
cerning quasicrystals. However, the cut description 
deserves recognition from the point of view of crystal- 
lography. Apart from that, the cut method provides 
a common tool for describing various kinds of incom- 
mensurate structures, for instance quasicrystals, 
incommensurate modulated structures and so-called 
chimney-ladder structures which consist of two 
different subcells related to each other irrationally in 
the cell dimensions along a special direction. It shows 
some advantages in describing quasicrystal structures 
(Yamamoto & Hiraga, 1988; Ishihara & Yamamoto, 
1988). 

In the present paper the simplicity of quasicrystal 
structure formulation by the cut method is demon- 
strated. Special attention is paid to icosahedral quasi- 
lattices distorted by the linear phason strain and the 
relationship between the icosahedral quasilattice and 
the corresponding periodic lattice. 

2. Real and reciprocal quasilattice formulation 

Let L0(rll, r±) represent the 6D cubic lattice function 
which consists of a series of 8 functions with their 

centers at the positions of lattice points 

Lo(rll,r±) =y~ ~ 8(rli-Rii)8(rj -R±).  (2-1) 
RII R± 

Here rll(Xll, YlI, Zll) and r±(x±, y±, z±) denote coordi- 
nate vectors and RII and R± denote lattice vectors in 
physical and pseudo spaces respectively. Axes Xll , YlI ,  

Zll , x±, y± and z± are orthogonal to one another, but 
they are generally not parallel to the basic vectors of 
the 6D cubic unit cell. When all lattice nodes have a 
definite size and shape described by the window 
function S(r±) and 

10 inside a certain region 
S(r±) = in the pseudo space (2-2) 

elsewhere, 

the lattice function becomes the convolution of 
L0(rll , r±) with S(r±): 

L(rll, r±) = S(r±) * L0(rll, r±), (2-3) 

where * denotes the operation of convolution. The 
corresponding reciprocal lattice is written as 

/(gll, g~) = s(g±)/0(gll, g±), (2-4) 

where s(g±) and lo(gll, g±) are the Fourier transforms 
of S(rl) and Lo(rll, r±) respectively. Obviously, the 
real and reciprocal lattices are quite different in the 
shape of their lattice nodes and in their boundary 
conditions. The real lattice is unlimited. Its lattice 
nodes have definite size and shape along the pseudo 
space, but they are sharp along the physical space. 
The reciprocal lattice is limited and its lattice nodes 
are sharp along both subspaces. The section of 6D 
cubic lattice in the real space with the 3D physical 
space gives the 3D quasilattice u(rll). When the 6D 
lattice nodes have the shape of a triacontahedron, 
the quasilattice is a standard 3D Penrose tiling. 
Because the Fourier transform of a section of any 
function equals the projection of the Fourier trans- 
form of this function along the direction perpen- 
dicular to the sectional plane, it is easy to write down 
the Fourier transform of the quasilattice function as 
follows: 

V(gll) -" ~ l(gll, g±) dg 3 

= Y. Y. s(G±)8(gli-G±) , (2-5) 
GII Gi 

where GII and G± are the components of 6D 
reciprocal-lattice vectors in the physical and pseudo 
spaces respectively. The inverse Fourier transform of 
V(gll ) gives the formula for quasilattices identical to 
the density wave expression: 

u(rll ) = ~ ~ s(G±) exp (2zrirllGii). (2-6) 
GII G± 

Formulae (2-5) and (2-6) are the same as those 
obtained by the other methods. The principle and 
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procedure for deriving these formulae by the cut 
method are shown schematically in Fig. 1. 

3. Structure factor of  quasicrystals  

Although so far the proposed quasicrystal structure 
models are based on distributing atoms in the physical 
space directly (Elser & Henley, 1985; Audier & Guyot, 
1986; Henley & Elser, 1986; Audier, Sainfort & 
Dubost, 1986; Yang, 1988, 1989), the atomic structure 
of quasicrystals can also be obtained by cutting a 6D 
periodic structure if hyperatoms are distributed in the 
6D unit cell (Li, Wang & Fan, 1987). The 6D crystal 
structure po(rll , r±) can be written as the convolution 
of the lattice function L(rtl ,r±) with the function 
q~o(rll,r±) which describes the atomic distribution 
inside the 6D unit cell: 

po(rll,r±) = S(r±) * Lo(rll, r±) * ¢p0(rll, r±). (3-1) 

As far as the structure analysis by diffraction methods 
is concerned, ¢po(rll , r±) and po(rll , r±) are electron 
density functions for X-rays and are potential distri- 
bution functions for electrons. The function S(r±) 
describes the shape of lattice nodes and the shape of 
hyperatoms in the pseudo space. The intersection of 
any hyperatom with the physical space gives the real 
atom. The expression for the 3D quasicrystal structure 
p(rll) , which is the intersection of po(rll, r±) with the 
physical space, can be obtained by the procedure 
shown in Fig. 1, namely, firstly by doing the Fourier 
transform of po(rll , r±), secondly by projecting the 
product along the pseudo space and finally by per- 
forming the inverse Fourier transform. 

P(rll) = E ~ s(G±)Fo(GII, GI) exp (27rirllGfl), (3-2) 
GII G± 

L(r..r~) FT = [(g,,.g~) 

'.Cut with E,, along E~ + 

u(r,,) ~ .  IFT v(g.) 

Fig. 1. Schematic diagram showing the principle of deriving the 
quasiperiodic lattice function in the cut description. L(rll , r±) 
denotes an unlimited 6D periodic real lattice with lattice points 
of definite size and shape, l(gll, g±) denotes the 6D periodic 
reciprocal lattice which is limited in the pseudo space and has 
sharp lattice points. The projection of l(gH, gi) in pseudo space 
gives a 3D reciprocal quasilattice V(gll ) which has sharp lattice 
points and spreads along the physical space unlimitedly. The 
inverse Fourier transform of V(gll) gives the quasiperiodic lattice 
u(rll) which is also unlimited and has sharp lattice points, u(rll ) 
is none other than a section of the 6D lattice function L(rll , rl) 
in the physical space. 

where Fo(gll, gl) = ff[Cpo(rll, r±) ]  is the structure factor 
of the 6D crystal, ~ denotes the operation of Fourier 
transform. The quasicrystal structure factor is 

F(GII, G±)= s(G±)Fo(GII, G±). (3-3) 

Here both GII and Gx are labeled with six icosahedral 
indices (Elser, 1985) or six orthogonal indices (Cahn, 
Shechtman & Gratias, 1986; Li & Wang, 1988) when 
the 6D lattice is cut irrationally by the physical space. 
Hence, there is a one-to-one correspondence between 
the structure factor of quasicrystals and the structure 
factor of the related high-dimensional crystal. The 
structure factor of the quasicrystal equals the struc- 
tur, e factor of the corresponding high-dimensional 
crystal modulated by the function s(G±). 

Formula (3-3) is very useful for developing the 
direct method in quasicrystal structure determination 
(Li, Wang & Fan, 1987; Xiang, Li & Fan, 1990) by 
X-ray or electron-diffraction analysis and useful also 
for determining quasicrystal structures by use of the 
trial-and-error method, where the proposed structure 
model is given first in the 6D space. 

4. Quasi latt ices  with phason defect 

The defect in the quasicrystals can be described as 
the phase change in the density wave expression 
(Lubensky, Socolar, Steinhardt, Bancel & Heiney, 
1986): 

p(rll) = ~ ~ s(G±) exp [27ri(Gtlrll-I-AG)], (4-1) 
GII Gx 

AG = Gllu+ G±w, (4-2) 

u and w are components of a 6D displacement vector 
in the physical and pseudo spaces, or the so-called 
phonon and phason strains respectively. The phason 
defect caused by the phason strain is peculiar to 
quasicrystals. In this section the discussion will con- 
cern only the linear phason strain. Let u - -0  and 

w = Mrll , 

where M is a second-rank tensor, or 

(4-3) 

M = e±Mell , (4-4) 

e± and ell denote unit vectors in the pseudo and 
physical spaces respectively, M is a matrix of order 
three and will be called the phason matrix. 

Equations (4-3) and (4-4) imply that to introduce 
a linear phason strain into the 6D lattice makes all 
lattice points which have a definite shape and size in 
the pseudo space and are sharp in the physical space 
shift along the pseudo space. The shift is proportional 
to the phason matrix and the component of the lattice 
vector in the physical space. Hence, the 6D lattice 
and also the 3D quasilattice obtained by cutting the 
6D lattice with the physical space will be distorted. 
In principle, the formulation of such a distorted 



F. H. LI AND Y. F. C H E N G  145 

quasilattice, called a phason defected quasilattice, 
should be derived on the basis of the distorted 6D 
lattice. However, we are not interested in the 6D 
lattice itself, but only interested in its section with 
the physical space. In the following it will be demon- 
strated that introducing a linear phason strain into 
quasilattices is equivalent to a rotation of the physical 
space relative to the high-dimensional space s~ that 
the phason defected quasilattice can also be obtained 
by cutting the undistorted 6D lattice with a new 3D 
superplane. 

Fig. 2 shows a two-dimensional (2D) square lattice 
with basis vectors al and a2 of the same length a. All 
lattice nodes elongate along axis x± (pseudo space) 
to form lattice bars. The one-dimensional (1 D) quasi- 
lattice is obtained by cutting the 2D lattice with axis 
Xll (physical space) which is perpendicular to axis x± 
and irrationally oriented to the 2D lattice. The 1D 
quasilattice obtained consists of two elemental seg- 
ments of length l = a  cos 0 and s =  a sin 0. When 
arccot 0 = ~- and the length of the lattice bars equals 
( l + s ) ,  the obtained 1D quasilattice is identical to 
the Fibonacci sequence. When a linear phason strain 
w = rnxll is introduced all lattice bars will be displaced 
along the direction parallel to axis x± by a distance 
m Rii , RII is the component of the corresponding lattice 
vector in the physical space. A distorted 1D quasilat- 
tice is obtained by cutting the displaced lattice bars 
with axis Xll. It is none other than the 1D quasilattice 
obtained firstly by cutting undistorted lattice bars with 
an axis xll which forms an angle ~ = arctan m with 
axis xll, and secondly by multiplying the obtained 
sequence by a factor 1/(1 + m2) ~/2. The formulation 
of such a phason defected quasilattice is straightfor- 
ward by setting up a new Cartesian coordinate system 

! o with axes xll and xi .  

( x i ' ~ -  1 ( 1  m lm)(xllt=Tm(xl') (4-5) 
x'a_/ 1 + m 2 \ x ± /  \ x x / "  

Tm is the rotation matrix describing the rotation trans- 

\ \ \ \  \ \  

Fig. 2. Schematic diagram showing that the transformation from 
a 1D quasilattice to a periodic lattice is equivalent to a rotation 
of the physical space from axis Xll to x[[ with the help of a rotation 
matrix Tin. f =  (1 + m2) 1/2. 

formation from the coordinate system (xll, x±) to 
(xfl, x ') .  

( Xll~=T~,'{Xil~=( 1 7)(Xil~ (4-6) 
x±/ \x'~/ -m \x: /" 

Accordingly, in the reciprocal space 

(gil'g'i)=(gll'g±)( 1-m 7)" (4-7) 

For deriving the Fourier transform of the 1D phason 
defected quasilattice which is the intersection of the 
2D square lattice with axis xll defined by (4-5), it 
should be noticed that the Fourier transform of the 
window function remains unchanged in the new coor- 
dinate system. This is because the lattice nodes should 
always remain sharp in the physical space so that all 
lattice bars must always be considered as perpen- 
dicular to the physical space. Hence, the Fourier 
transform of a phason defected 1D quasilattice can 
be simply written as 

V'(gfl) =.[ s(g;) ~, ~, 8(g(i-Gil)8(g',  - G ; )  dg',. 
c i c l  (4-8) 

It should be emphasized that the new coordinated 
system is only a tool for formulating the phason 
defected quasilattice. In general, (4-5) gives only the 
relationship between two coordinate systems but does 
not give the coordinate relationship between the 
idealized quasilattice nodes obtained by cutting the 
2D square lattice with axis Xll and the phason defected 
quasilattice nodes obtained by cutting the 2D square 
lattice with axis xil. The only exception is the case 
when axis xll intercepts lattice bars at their center so 
that the 1D quasilattice turns into a periodic lattice. 
However, (4-7) always gives the right coordinate 
relationship between the reciprocal-lattice nodes of 
the idealized and the phason defected quasilattice. 
This is because all lattice nodes are sharp in the 2D 
reciprocal space and the reciprocal quasilattice nodes 
are projections of the sharp 2D lattice nodes. Thus 
the reciprocal quasilattice vectors of the phason 
defected quasilattice are expressed as 

GII = GII- mG~_. (4-9) 

To illustrate clearly the change of Fourier spectra 
of the phason defected quasilattice, a coordinate 
transformation is made so that 

V'(gll) = ~ s(gj.) E E 8[g l l - (GII -  rnG±)] 
GII G± 

x. 8 [ g ± -  (G± + mGll)] dg±, (4-10) 

o r  

V'(gll)=s(G.) Y Y 8 [ g l i - ( a l i - m G ~ ) ] ,  (4-11) 
GII G± 

here the function s(G± + mGll) is replaced by s(Gj_) 
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owing to the above reason that in the real space all 
lattice bars are always perpendicular to the physical 
space. The density wave expression of the phason 
defected 1D quasilattice is 

u'(xll) = E E s (G±)exp[2zr ix l l (GII - rnG±) ] .  (4-12) 
GII G± 

In the case of a 3D quasilattice with a phason defect 
the new 6D orthogonal coordinate system (ril, r'~) is 
related to the old one by 

r ! l / = k ( /  - iM) ( r l l )=Tm(r l ' ) ,  (4-5') 
r± /  \ r ± /  \ r ± /  

and 

( r l l ~ = T ~ , ' ( r i l ~ = (  / ? ) ( r ! l ) ,  (4-6') 
r± /  \ r : ]  - \ r ± /  

where ! is the unit matrix of order 3, M the phason 
matrix, M the transpose matrix of M and k the 
multiplying factor depending on the elements of M. 
In the reciprocal space 

('  
(gil, g;)  = (gll, g±) -1~ (4-7') 

and 

GII = GII- G±I~I. (4-9') 

The Fourier transform of the 3D quasilattice with a 
linear phason defect is 

V'(gll) = s(G±) E E 3[glI-(GII-G±IVI)]. (4-11') 
GII G± 

The corresponding density wave expression is 

u'(rll) = ~ ~ s(G±) exp [27rirll(Gii-G±lVI) ]. (4-12') 
Gll Gx 

The phase change caused by the phason strain is 

A G =  -G±IVI. (4-13) 

According to (2-5) the diffraction intensity of quasi- 
crystals is modulated by Is(G±)l 2 so that strong diffrac- 
tion peaks generally correspond to small G± and vice 
versa. Formula (4-13) indicates that the shift of 
diffraction peaks is proportional to the absolute value 
of G±. Hence, a weak diffraction peak is bound to 
have a large shift while a strong peak has a small 
shift, as was pointed out by Lubensky et al. (1986). 
This has been confirmed by experimental results. One 
more point worth noticing is that the diffraction peaks 
move along the direction opposite to G±M. 

Although the results obtained in this section are 
principally the same as those obtained by the projec- 
tion method where the action of a linear phason strain 
is treated as the rotation of the projection strip (Cheng 
& Li, 1990), here the derivation is much simplified. 

5. From icosahedral lattice to b.c.c, lattice 

Recently, the intermediate states between the I and 
b.c.c, phases were first revealed clearly in A1-Cu-Mg 
alloy by electron diffraction and high-resolution elec- 
tron microscopy (Li, Teng, Huang, Chen & Chen, 
1988). Later, a similar phenomenon was observed by 
the X-ray precession technique (Mai, Zhang, Hui, 
Huang &Chen,  1988). Furthermore, a series of elec- 
tron-diffraction patterns showing an almost con- 
tinuous transformation from the I to the b.c.c, phase 
was obtained in A1-Cu-Li alloy (Li, Pan, Tao, Hui, 
Mai, Chen& Cai, 1989). All of these imply a close 
relationship between the I and b.c.c, phases. Mai, 
Tao, Zeng & Zhang (1988) have given an illustration 
of this. However, some points need clarifying. This 
section aims to derive the relationship between the I 
phase and the b.c.c, phase more strictly but rather 
simply by the cut method. 

The 6D cubic lattice is described by a 6D 
orthogonal coordinate system (xl, x2, x3, x4, xs, Xr) 
with six basis vectors al, az, a3, a4, a5 and a6 which 
form a 6D unit cell of edge length a. If the 6D space 
is divided into two orthogonal subspaces- the phy- 
sical space Ell and the pseudo space E±, the com- 
ponents of the six basis vectors in Ell are six basis 
vectors el, e2, Ca, e4, e5 and e6 in the icosahedral coor- 
dinate system (Elser, 1986; Katz & Duneau, 1986) 
which is widely used in describing icosahedral quasi- 
crystals. Another set of six basis vectors in the 6D 
space can be selected such that three vectors, for 
instance, allx, ally and all z are in the physical space, 
while the other three, a±x, a±y and a±z are in the 
pseudo space. The transformation from allx, ally , allz, 
a±x, a±y, a±z to  a l ,  a2, a3, a4, as ,  a 6 is performed by 
a matrix T: 

(allx, ally, allz, a±x, a±y, a±z) 

-- (al ,  a2, a3, a4, a5, a6) T. (5-1) 

The transformation matrix T was given by Cahn et 
al. (1986) and by Li & Wang (1988). However, the 
right choice of the relative configuration between two 
sets of basis vectors is essential for obtaining a con- 
venient form of the phason matrix to describe the 
transformation from icosahedral quasicrystals to 
b.c.c, crystals. If axes xll, YlI, zll and axes x±, y±, z± 
are arranged relative to the corresponding icosahedral 
basis vectors as shown in Fig. 3, matrix T will have 
the form 

1 
T =  

(2 q- 2~-2) '/2 

r 0 1 -1  0 r l  

z 0 -1  -1 0 - r  

0 1 - r  0 r 1 

-1  r 0 - r  -1  0 

0 1 ~" 0 z - 1  

1 r 0 r - 1  0 

(5-2) 
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According to (5-2), vectors allx , ally , allz , a±x, a±y and 
a±z are the same length as vectors aj (j = 1, 2 , . . . ,  6) 
and allx, ally , all z and a±x, a±y, a±z are parallel to three 
twofold axes of the basis icosahedron in the physical 
and pseudo spaces respectively. 

In the following it will be proved that a peculiar 
linear phason strain with the phason matrix 0) 

M =  m 0 (5-3) 

0 m 

makes the icosahedral quasilattice distort in such a 
way that the lattice takes a form in between" 
quasiperiodic and periodic states or turns into the 
b.c.c, lattice when m takes a definite value. 

The 6D space can also be divided into another pair 
of subspaces Ell and E; with basis vectors ailx , ally , 
ailz and ' ' ' a±x, a±y, a±z respectively. The transformation 
from Ell and E± to Ell and E'~ is performed by the 
matrix 

and 

( a f l x , a i l y , a i l z ,  ' ' ' a±x,  a±y, a±z) 

=(allx,  ally, allz, a±x, axy, a±z)T~ 1. (5-5) 

The intersection of the 6D hypercubic lattice with Ell 
gives the 3D quasilattice distorted by the linear 
phason strain. The transformation from (a~, a2, a3, 
a4, as, a6) to (alex, al~y , al~z, a~_x, a~_y, a',z) is performed 
by the product matrix T~' T: 

(a l l±  a l l y , a l l  ' ' ' , z, a±x, a l y ,  a±z) 

= (al, a2, a3, a4, as, a6)TTm' (5-6) 

TT~ l = fit 
i 0 t 2 - - t  2 0 tl 1 

0 - - t 2 - - t  2 0 - t l  
1 t 2 t~ 0 tl t2 

(2+27.2)1/21--/2 tl 0 --tl--t2 0 

t2 tl 0 tl --t2 

\ t 2  tl 0 tl --t2 0 

, (5 -7)  

Z. Z.L 

"\--I-7" >: 
, ~  ee Y' Y, 

x . . . . .  

e2 
(a) (b) 

Fig. 3. Relationship between the icosahedral coordinate system 
and the orthogonal coordinate system in (a) physical and (b) 
pseudo spaces. 

where tl = r +  m and t2----1-mr.  When m =0,  i.e. 
when the phason strain vanishes, the product matrix 
degenerates to matrix T so that the intersection of 
the 6D hypercubic lattice with the subspace Eli gives 
a perfect or an idealized icosahedral quasilattice. 
When t l / t  2 becomes a ratio of two integers, the section 
would be a 3D periodic lattice. When tilt2 = 1 or 
m = - ( r -  1 ) / ( r +  1)=-0"236,  

1 0 1 - 1  0 1' 

0 0 -1  -1  0 -1  
TT~I_  (2+27.2) 1/2 1 -1  0 1 1 

- 2 1 0 - 1  - 1  0 (5-8)  

1 1 0 1 -1  

1 0 1 - 1  0 

In this case the corresponding index relationship in 
the reciprocal space is 

( hil, k[i, lil, h'~, k'~, l; ) 

=(hl ,h2,  h3, h4, hs, h6)TTm 1. (5-9) 

If we let h - h[i , k-= k[i and l---/ii, then 

(2+27.2) 1/2 
(h,k,l)= (hl, . . . ,h6) 

2 

1 0 1' 

1 0 - 1  

0 1 - 1  

- 1  1 0 

0 1 1 

1 1 0 

(5-10) 

Equation (5-10) shows that the three reciprocal basis 
vectors for the physical space are still of the same 
length. Therefore, they form a reciprocal cubic unit 
cell. 

In order to have integer indices h, k, l, the 
reciprocal-lattice parameter a* should be 

(2-1- 2r2) 1/2 
a* - 2r  2 a*, (5-11) 

where a * =  1/a. Then the corresponding lattice par- 
ameter in the real space is 

27 .2 27. 2 
ac - (2+ 272)u2 a - (1 + 7.2) uEaR' (5-12) 

where aR is the edge length of rhombohedra which 
form the 3D Penrose tiling. Let ac, bc and c~ represent 
the three basis vectors of the cubic lattice in the real 
space, then the relationship of ac, b~, ec with the six 
6D basis vectors a l , . . . ,  a6 is obtained from (5-6), 
(5-8) and (5-12) as follows: 

ac= 7.2(a 1 + a 2 - a 4 +  a6)/(2+ 27.2) 1/2, 

be= 7.2(aa+a4+as+a6)/(2+27.2)u2 , (5-13) 

c~ = 7.2(al- a2 -  a3 +as) / (2  + 27.2) 1/2 



148 QUASICRYSTAL STRUCTURES 

Obviously, the diagonal of the cubic unit cell has the 
length 

[ac + bc + col 

= T 2 ] 2 a l - 2 a s + 2 a 6 [ / ( 2 + 2 T 2 )  ~/2. (5-14) 

Equation (5-14) implies that there is a lattice node at 
the center of the body diagonal. Hence, the cubic 
lattice is of the b.c.c, type. 

It was determined that the edge length of rhombo- 
hedra for the icosahedral phase (I phase) in A1-Cu- 
Li alloy is 5.04 A (Shen, Poon, Dmowski, Egami & 
Shiflet, 1987). According to (5-12) the corresponding 
b.c.c, lattice parameter would be 13.9 A. This is in 
agreement with the lattice parameter of the b.c.c. 
phase R-AIsCuLi3 (Cherkashin, Krinyakevich & 
Oleksiv, 1963). 

6. Discussion 

The quasicrystal structure can be described by the 
cut method and the projection method. The cut 
method can be used to describe various kinds of 
modulated structures including the incommensurate 
modulated structure, the chimney-ladder structure 
and the quasicrystal structure. But not all kinds of 
modulated structure can be described by the projec- 
tion method. For instance, the projection method 
becomes powerless against the incommensurate 
modulated structure. 

Although the cut method gives the same results as 
the projection method in describing quasicrystals, the 
proof of the discrete character of the Fourier trans- 
form of the quasicrystal structure is straightforward 
and the quasicrystal structure formulation becomes 
simple in the cut description. 

The linear phason strain which leads to a distortion 
of the quasilattice is equivalent to the strip rotation 
in the projection method, while in the cut method it 
is equivalent to the rotation of physical space relative 
to the high-dimensional space. When the physical 
space, starting from the irrational orientation, rotates 
continuously towards a rational orientation, the 
quasilattice turns continuously towards a periodic 
lattice (see also Kramer, 1987). This is confirmed 
experimentally by two series of electron diffraction 
patterns showing an almost continuous transforma- 
tion from the idealized icosahedral quasicrystal in 
A1-Cu-Li alloy (T2 phase) towards the b.c.c, phase 
(R phase) (Li et al., 1989). The geometrical relation- 
ship between the quasilattice and the phason related 
periodic lattice can be derived under both the projec- 
tion method and the cut method. However, in the 
latter case the derivation becomes simple and clear. 

In some alloys such as AI-Cu-Li and A1-Cu(Zn)- 
Mg the I phase coexists with a b.c.c, phase close in 
composition (Sainfort & Dubost, 1986; Henley & 
Elser, 1986). In such cases the lattice of the b.c.c. 
phase can be considered as an I phase extremely 

distorted by a peculiar linear phason strain (Li et al., 
1989). Hence, it is reasonable to construct the struc- 
ture model of the I phase on the basis of the corres- 
ponding b.c.c, phase. 

Elser & Henley (1985), Audier & Guyot (1986), 
Henley & Elser (1986), Audier et al. (1986) and Yang 
(1988, 1989) proposed icosahedral quasicrystal struc- 
ture models by directly distributing atoms in the 3D 
space. Another possible approach to quasicrystal 
structure models is first to distribute hyperatoms in 
the 6D space and then to obtain the 3D quasicrystal 
structure model by cut or projection. The advantage 
of this approach is to give the convenience of applying 
the diffraction analysis technique developed for crys- 
tal structure research to the case of quasicrystals. The 
argument and the formulation of the transformation 
from the icosahedral quasilattice to the corresponding 
b.c.c, lattice and the experimental evidence of the 
existence of intermediate states between the I phase 
and the b.c.c, phase are beneficial to the distribution 
of hyperatoms in the 6D space. A 6D crystal is under 
construction for the AI-Cu-Li quasicrystal. The result 
will be published elsewhere. 
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